\qquad

Activity 1G: Measuring Angles

You will need the following equipment for these lab activities:

- Protractor; tutorial on how to use a protractor.
- 360 Protractor (Note: both protractors can be printed. Print on transparency for best results.)

Figure 1.12: Protractor examples. A 360-degree protractor example is on the left, and a classic 180-degree protractor on the right. Both are commonly used for scientific purposes.

1. Using your protractor, measure the angle of the arrow below.

2.

Figure 1.13.1: An acute angle for measurement.
2. Using your protractor, measure the angle of the arrow below.

Figure 1.13.2: An acute angle for measurement.
3. Using your protractor, measure the angle of the arrow below.

Figure 1.13.3: An acute angle for measurement.
4. Using your protractor, measure the angle of the arrow below.

Figure 1.13.4: An obtuse angle for measurement.
5. Below is a compass rose, which indicates the cardinal directions. North (N) is always represented as $0^{\circ} / 360^{\circ}$. On the compass below, label:
a. The remaining cardinal directions ($\mathrm{S}, \mathrm{W}, \mathrm{E}$) in black.
b. The intermediate points (NE, SE, NW, SW) in brown.
c. The intermediate points of the intermediate points (NNE, ENE, ESE, SSE, SSW, WSW, NNW, WNW) in blue.

Figure 1.14: 360-degree protractor overlain with a standard compass rose; north is to the top of the page.

Name: \qquad

Attributions

- Figure 1.12: Derivative of Left: "Protractor Rapporteur Degree V1" (CC-BY-SA 3.0; Autiwa via Wikimedia Commons) and Right: "Rapporteur" (Public Domain; Scientif38 via Wikimedia Commons) by Chloe Branciforte
- Figure 1.13: "Angles for measurement" (CC-BY 4.0; Chloe Branciforte, own work)
- Figure 1.14: Derivative of "Protractor Rapporteur Degree V1" (CC-BY-SA 3.0; Autiwa via Wikimedia Commons) by Chloe Branciforte

